Part Number Hot Search : 
2SC494 BP9632B SMV3460A 5M0965 BT139 LTD056 CR60J BP9632B
Product Description
Full Text Search
 

To Download AP2851GO Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AP2851GO
Pb Free Plating Product
Advanced Power Electronics Corp.
Simple Drive Requirement Low On-resistance Fast Switching Performance
TSSOP-8
D1 S1 S2 D2 S2 G2
N AND P-CHANNEL ENHANCEMENT MODE POWER MOSFET
N-CH BVDSS RDS(ON)
S1 G1
30V 40m 5A -30V 80m -3.3A
ID P-CH BVDSS RDS(ON) ID
Description
The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, ultra low on-resistance and cost-effectiveness.
G1
D1
D2
G2 S1 S2
Absolute Maximum Ratings
Symbol VDS VGS ID@TA=25 ID@TA=70 IDM PD@TA=25 TSTG TJ Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Continuous Drain Current Pulsed Drain Current
1 3 3
Rating N-channel 30 20 5 3.9 20 1.38 0.01 -55 to 150 -55 to 150 P-channel -30 20 -3.3 -2.7 -20
Units V V A A A W W/
Total Power Dissipation Linear Derating Factor Storage Temperature Range Operating Junction Temperature Range
Thermal Data
Symbol Rthj-a Parameter Thermal Resistance Junction-ambient
3
Value Max. 90
Unit /W
Data and specifications subject to change without notice
200817041
AP2851GO
N-CH Electrical Characteristics@Tj=25 C(unless otherwise specified)
Symbol BVDSS
BVDSS/Tj
o
Parameter Drain-Source Breakdown Voltage
2
Test Conditions VGS=0V, ID=250uA
Min. 30 1 -
Typ. 0.03 7 6 2 4 8 7 14 3 450 100 70
Max. Units 40 60 3 1 25 100 10 720 V V/ m m V S uA uA nA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25, ID=1mA
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=5A VGS=4.5V, ID=3A
VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (Tj=25 C) Drain-Source Leakage Current (Tj=70oC)
o
VDS=VGS, ID=250uA VDS=10V, ID=5A VDS=30V, VGS=0V VDS=24V, VGS=0V VGS=20V ID=5A VDS=24V VGS=4.5V VDS=15V ID=1A RG=3.3,VGS=10V RD=15 VGS=0V VDS=25V f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
2
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2
Test Conditions IS=1.2A, VGS=0V IS=5A, VGS=0V dI/dt=100A/s
Min. -
Typ. 17 11
Max. Units 1.2 V ns nC
Reverse Recovery Time Reverse Recovery Charge
AP2851GO
P-CH Electrical Characteristics@Tj=25oC(unless otherwise specified)
Symbol BVDSS
BVDSS/Tj
Parameter Drain-Source Breakdown Voltage Static Drain-Source On-Resistance Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (T j=25 C) Drain-Source Leakage Current (T j=70 C)
o o
Test Conditions VGS=0V, ID=-250uA
2
Min. -30 -1 -
Typ. -0.03 4 5 0.8 3 8 6 20 4 430 90 60
Max. Units 80 120 -3 -1 -25 100 8 910 V V/ m m V S uA uA nA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25,ID=-1mA
RDS(ON) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
VGS=-10V, ID=-3A VGS=-4.5V, ID=-2A VDS=VGS, ID=-250uA VDS=-10V, ID=-3A VDS=-30V, VGS=0V VDS=-24V, VGS=0V VGS=20V ID=-3A VDS=-24V VGS=-4.5V VDS=-15V ID=-1A RG=3.3,VGS=-10V RD=15 VGS=0V VDS=-25V f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
2
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2
Test Conditions IS=-1.2A, VGS=0V IS=-3A, VGS=0V dI/dt=-100A/s
Min. -
Typ. 20 19
Max. Units -1.2 V ns nC
Reverse Recovery Time Reverse Recovery Charge
Notes:
1.Pulse width limited by Max. junction temperature. 2.Pulse width <300us , duty cycle <2%. 3.Surface mounted on 1 in2 copper pad of FR4 board , t <10sec ; 208/W when mounted on min. copper pad.
AP2851GO
N-Channel
30
30
T A =25 C
o
10V 7.0V 5.0V
20
T A = 150 o C
10V 7.0V
ID , Drain Current (A)
20
5.0V 4.5V
10
ID , Drain Current (A)
4.5V
10
V G =3.0V
0 0 1 2 3 4
V G =3.0V
0 0 1 2 3 4
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
65
1.6
60
ID=3A T A =25 o C Normalized RDS(ON)
1.4
I D =5A V G =10V
55
RDS(ON) (m )
1.2
50
45
1.0
40
0.8
35
30
0.6 2 4 6 8 10 -50 0 50 100 150
V GS , Gate-to-Source Voltage (V)
T j , Junction Temperature ( o C)
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
2.0
5
4 1.5
3
IS(A)
T j =150 o C
2
T j =25 o C
Normalized VGS(th) (V)
1.2
1.0
0.5
1
0 0 0.2 0.4 0.6 0.8 1
0.0 -50 0 50 100 150
V SD , Source-to-Drain Voltage (V)
T j , Junction Temperature ( o C)
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
AP2851GO
N-Channel
f=1.0MHz
14 1000
12
VGS , Gate to Source Voltage (V)
ID=5A V DS = 24 V
C iss
10
8
C (pF)
100
C oss C rss
6
4
2
0 0 4 8 12 16
10 1 5 9 13 17 21 25 29
Q G , Total Gate Charge (nC)
V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Duty factor=0.5
10
0.2
100us 1ms ID (A)
1
Normalized Thermal Response (Rthja)
0.1
0.1
0.05
0.02 0.01
10ms 100ms
0.1
PDM
0.01 Single Pulse
t T
Duty factor = t/T Peak Tj = PDM x Rthja + Ta Rthja =208o C/W
T A =25 o C Single Pulse
0.01 0.1 1 10
1s 10s DC
100
0.001
0.0001
0.001
0.01
0.1
1
10
100
1000
V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG 4.5V QGS QGD
10% VGS td(on) tr td(off)tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform
AP2851GO
P-Channel
20
20
T A =25 C -ID , Drain Current (A)
15
o
-10V -7.0V -ID , Drain Current (A)
15
-10V T A = 150 o C -7.0V
-5.0V -4.5V
10
-5.0V
10
-4.5V
5
5
V G =-3.0V
V G =-3.0V
0
0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
-V DS , Drain-to-Source Voltage (V)
-V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
120
1.6
110
I D = -2 A T A =25 C
o
1.4
ID=-3A V G = - 10V
100
Normalized R DS(ON)
RDS(ON) (m )
1.2
90
1.0
80
0.8
70
60
0.6 2 4 6 8 10 -50 0 50 100 150
-V GS , Gate-to-Source Voltage (V)
T j , Junction Temperature ( C)
o
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
2.0
4
-IS(A)
o T j =150 C
2
T j =25 o C
Normalized -VGS(th) (V)
3
1.5
1.0
1
0.5
0 0 0.2 0.4 0.6 0.8 1 1.2
0.0 -50 0 50 100 150
-V SD , Source-to-Drain Voltage (V)
T j , Junction Temperature ( o C)
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
AP2851GO
P-Channel
f=1.0MHz
12 1000
10
-VGS , Gate to Source Voltage (V)
I D =- 3 A V DS =-24V
C iss
8
C (pF)
6
100
C oss C rss
4
2
0 0 2 4 6 8 10 12
10 1 5 9 13 17 21 25 29
Q G , Total Gate Charge (nC)
-V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Duty factor=0.5
Normalized Thermal Response (Rthja)
10
0.2
0.1
0.1 0.05
1ms -ID (A)
1
10ms 100ms
0.1
0.02 0.01
PDM 0.01
Single Pulse
t T
Duty factor = t/T Peak Tj = PDM x Rthja + Ta Rthja=208oC/W
T A =25 o C Single Pulse
1s 10s DC
10 100
0.01 0.1 1
0.001 0.0001 0.001 0.01 0.1 1 10 100 1000
-V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG -4.5V QGS QGD
10% VGS td(on) tr td(off) tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform


▲Up To Search▲   

 
Price & Availability of AP2851GO

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X